
<u>Aiming for a State of Good Repair:</u> Moving from Reactive to Preventative Rail Maintenance

Peeter Vesik – Asset Integration Project Manager Guideway(Track), Equipment, and Maintenance Infrastructure

Vancouver SkyTrain (not incl. Canada Line)

Expo/Millennium Line Fleet

Mark I: 2-car units UTDC 150 cars 12.7 m long

Mark II: 2-car units Bombardier 108 cars 16.7 m long

Mark III: 4-car units Mark IV: 5-car units Bombardier 84 cars 17 m long (avg.)

Alstom 205 cars 17 m long (avg.)

- LIM propulsion ۲
- **Steerable bogies** ٠
- Fully automated train control (driverless) •

System Size, Service Levels, and Demand on Assets

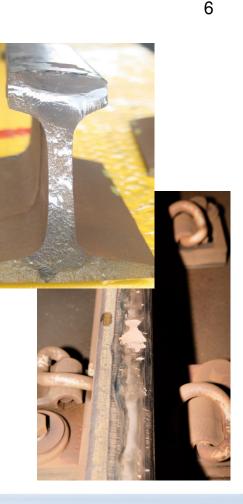
Rail Defect Types

Rail Corrugation – Typical Wavelength = 30-50mm

Removed by Rail Grinding

Mild RCF, Surface Cracking, and Spalls/Squats

- Repaired via rail plug or weld
- Maintained by regular grinding and monitoring


Track Maintenance History: 2010-2015

- Increased service levels from 2010 Olympics not aligned with maintenance practices
- BCRTC track maintenance department stretched thin
 - Keeping system safe and operable
 - Not setup for long-term sustainability
 - In-house rail grinder working, but at limited capacity
- NRC report in 2015 contained 557 defects
- If no intervention, significant re-railing would be required immediately (est. \$50M+)

RAIL TRANSIT SEMINAR · JUNE 21

WRI 2022

Track Maintenance History: 2016 to Current

2015:

- Rail replacements and plugs as required
- Contractor performed Aggressive Corrective Grinding, defect removal, and reprofiling to target
- Wheel-Rail profile compatibility assessment was completed **2016**:
- Contractor Re-grinds Entire System, focusing on profile and surface defects
- Introduction of 27 month grinding program by ARM (later changed to 24 month)

2017-2022:

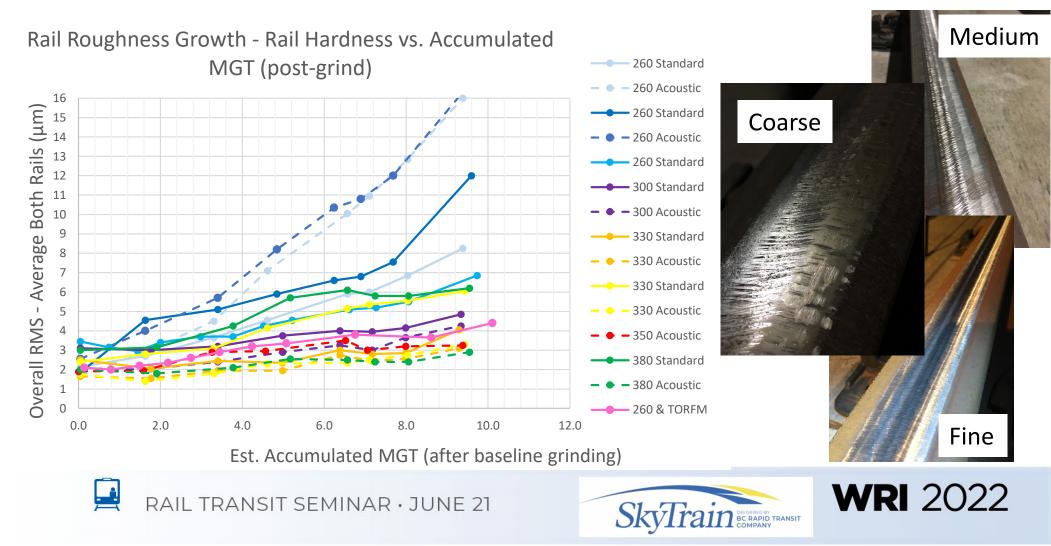
- BCRTC revives Harsco TG-8 in house grinder \rightarrow ~60km/yr to hit hot spots
- Contractor returns annually for ~40 shifts to grind system to compliment BCRTC in-house efforts, and do some of the heavy lifting
- ~3km (track) of Annual re-railing

Today's Grinding Strategy

Key focus of Grinding at SkyTrain:

- Transitioning from Corrective to Preventative Grinding
- Focus on minor damage, corrugation, and profile
- Make use of in-house and contract grinding equipment
- Other maintenance inputs and projects such as rail replacements, ultrasonic/geometry results used to constantly inform grinding program
- Grinding Schedule currently on 24-month cycle
 - Highest Frequency is Quarterly
 - Lowest Frequency is Bi-annual
 - 125km ground per year (Average)

Photo: Jack Lindquist





What Can we Control?

Tracking & Quantifying Grinding Effectiveness

10

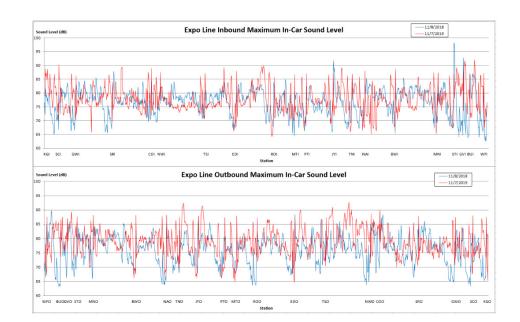
- Increased usage of single tracking (reduces % of time on travel)
- Strategically staging and tying-up equipment in locations which maximize track time (use pockets and sidings to limit travel time)
- Ensuring stone changes and re-fueling is completed during maintenance hours as often as possible

11

Tracking & Quantifying Grinding Effectiveness

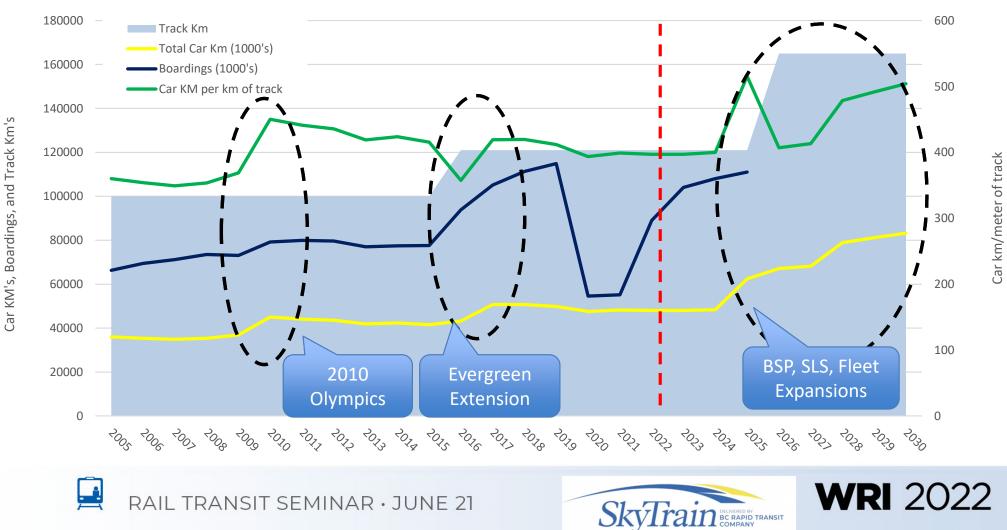
- Each year is requiring less passes than the year before
 - This is a testament to performing regular preventative grinding
- Less passes, combined with increased track time efficiency, means more track meters are being completed per shift
- Due to fixed annual grinding budget, improving conditions and increasing spark time means more track can be covered under the same amount of shifts

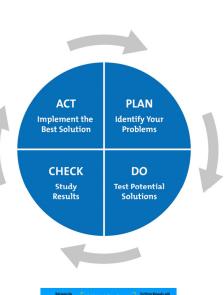
Quantifying Preventative Rail Maintenance



- Removing defects via grinding and rail replacements reduces impacts and vibration
- UT defect reduction aligns very well with moving to Preventative Rail maint. strategy
- More "severe" types of Defects no longer appearing
- Clearer reporting: Reduction in SSC defects for example

Other Metrics for Quantifying Preventative Rail Maintenance


- Maintenance work orders from visual track inspections
- Contact band width/position
- Noise complaint data
- Test train noise and impact data
- Geometry, profile, and Rail Wear Data



Looking into Future Demand on the System

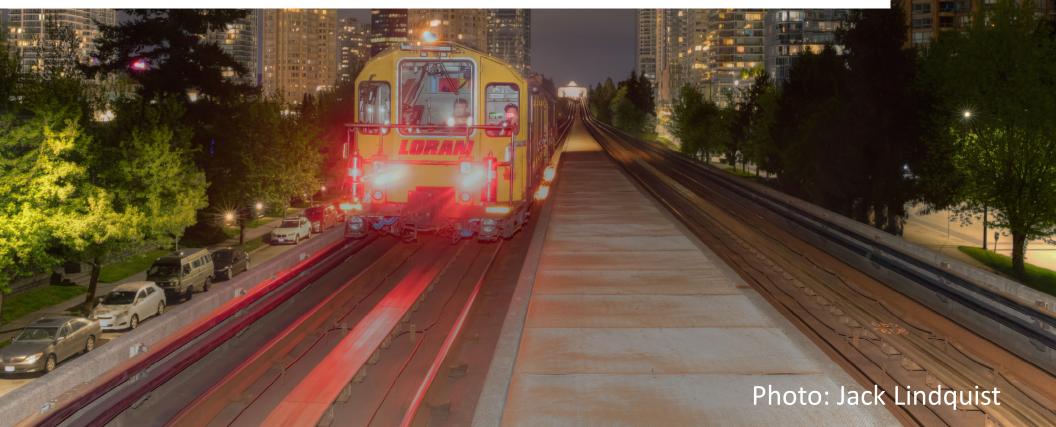
Lessons Learned

- Ensure maintenance voice is heard when planning extensions, increasing service or considering budgets
- A Good track maintenance program is about constant input, feedback, and adjustment
- Need champions to take a lead on rail condition and maintenance management
- Effectively communicate importance of rail maintenance, capital planning, and methods of measuring success to senior management regularly
- Ensure consultant recommendations are realistic and actionable from both a technical and business perspective

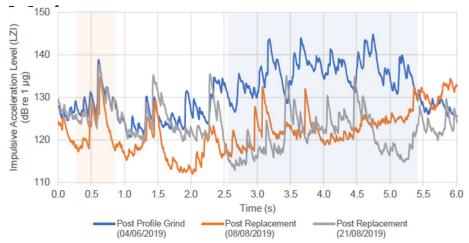
What's Next?

- New Rail profiles being designed to work with existing wheels
 - Phasing out of Mark 1 trains, incoming mark 5 trains ullet
 - 2-3 tangent profiles distributed to pummel wheels ۲
 - New Curve high and low rail profiles ullet
- Skytrain Noise Study Complete
 - Recommended systemwide TORFM (Currently in approval stages)
 - 3.2km of Rail Dampers currently in Implementation
 - Acoustic Rail grinding found to reduce corrugation growth in harder steels
 - Harder Rail demonstrated better resistance to corrugation growth, and no signs of RCF or other defect rates increasing

What's Next?


- Procurement of 2x (16) stone rail grinders to have optimized/distributed annual grinding capacity, and keeping capacity on hand for upcoming extensions
- Continue Running Rail and Fastener Replacement Program
 - 2.5-3km of track per year, replacing 260HB rail with 350-370HB

QUESTIONS AND DISCUSSION



Turnouts: Noise/Vibration Monitoring to Drive

- Old/Damaged switches difficult to remediate
- Replacing worn switch can result in up to 10dBa wayside noise reduction
- Must replace old/worn switches, but key is to preventatively maintain with switch grinding program

RAIL TRANSIT SEMINAR · JUNE 21

Switch (Typical Train Speed)	Condition	Broadband Wayside Sound Level [dBA]	Broadband Equivalent Vibration Level [dB re 10 ^{-e} g]	Reduction ¹	
				Sound Level	Vibration Level
DC09 (50 km/h)	Post Replacement	82	135	-	-
	Post Profile Grind	82	129	0	5
DC10 (48 km/h)	Post Profile Grind ²	90	137	-	-
	Post Replacement	80	123	10	14
DC11 (49 km/h)	Post Profile Grind	86	133	-	-
DC12 (46 km/h)	As-Found	85	134	-	-
	Post Profile Grind	86	135	0	-3
	Post Replacement	78	125	7	7
DC30 (75 km/h)	As-Found	90	128	-	-
	Post Profile Grind	90	131	0	-3
DC40 (75 km/h)	As-Found	88	135	-	-
	Post Profile and Rotary Grind	84	129	4	6

1 Negative reduction values correspond to an increase in the vibration level.

